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Abstract: This paper considers the problem of estimating the parameters of Poisson-Exponential (PE) distribution under 

progressive type-I interval censoring scheme. PE is a two-parameter lifetime distribution having an increasing hazard function. It 

has been applied in complementary risks problems in latent risks, that is in scenarios where maximum lifetime values are 

observed but information concerning factors accounting for component failure is unavailable. Under progressive type-I interval 

censoring, observations are known within two consecutively pre-arranged times and items would be withdrawn at pre-scheduled 

time points. This scheme is most suitable in those cases where continuous examination is impossible. Maximum likelihood 

estimates of Poisson-Exponential parameters are obtained via Expectation-Maximization (EM) algorithm. The EM algorithm is 

preferred as it has been confirmed to be a more superior tool when dealing with incomplete data sets having missing values, or 

models having truncated distributions. Asymptotic properties of the estimates are studied through simulation and compared 

based on bias and the mean squared error under different censoring schemes and parameter values. It is concluded that for an 

increasing sample size, the estimated values of the parameters tend to the true value. Among the four censoring schemes 

considered, the third scheme provides the most precise and accurate results followed by fourth scheme, first scheme and finally 

the second scheme. 
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1. Introduction 

In reliability and life testing studies exponential 

distribution has proved to be a distribution with a simple, 

elegant and closed form of solution, Tomazella [1]. However, 

its usefulness is limited based on the fact that it has a 

constant hazard function. In order to overcome this drawback, 

different authors have come up with new lifetime 

distributions based on modification of Exponential 

distribution. Gupta and Kundu [2] suggested a Generalized 

Exponential distribution (GED) that fit the data with 

decreasing and increasing hazard function. Modifying an 

Exponential distribution to a distribution with a decreasing 

hazard function was done by Kus [3]. The distribution 

proposed by Kus [3] was further modified by the inclusion of 

a power parameter by Barreto and Cribari [4]. 

Poisson-Exponential (PE) distribution is a two-parameter 

lifetime distribution which was first introduced by Cancho et 

al. [5]. Its failure rate increases with time. The distribution is 

widely applicable in complementary risk (CR) studies. 

Louzada-Neto et al. [6] studied statistical properties of PE 

distribution and discussed Bayes estimators based on 

Squared Error Loss Function (SELF). Singh et al. [7] 

obtained the Maximum Likelihood Estimators and Bayes 

estimators of the parameters of the PE distribution under 

symmetric and asymmetric loss function and compared the 

proposed estimators in terms of their risks with the 

Maximum Likelihood Estimators. Rodrigues et al. [8] 

considered different estimation methods for parameters of PE 

distribution. Gitahi et al. [9] obtained the Maximum 

Likelihood Estimators of the parameters of PE distribution 
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based on progressively type II censoring via the EM 

algorithm. Belaghi et al. [10] considered prediction and 

estimation of lifetime data following PE distribution under 

type II censoring. 

In this study, we assume that lifetimes have PE distribution. 

This distribution has been applied in complementary risk 

problems in latent risks, that is in scenarios where maximum 

lifetime values are observed but information concerning 

factors accounting for component failure is unavailable. 

A random variable X is said to have a Poisson-Exponential 

distribution if its probability density function (PDF) and 

cumulative distribution function (CDF) are respectively 

given by 
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Where 0θ > and 0λ > are respectively, the shape and 

scale parameters of the distribution. Louzada-Neto et al. [6] 

noted that the parameters λ  and θ  can be directly 

interpreted in terms of CR. That is; λ  represents lifetime 

failure rate while θ  denotes the mean number of CR. 

In lifetime analysis, censoring occurs when lifetime of an 

item is not observed. Various types of censoring exist of 

which Type I and type II censoring schemes are the most 

common. The time T of termination of the experiment is 

pre-arranged in type I censoring. On the other hand, the 

experiment continues until a pre-arranged number of failures 

occur in type II censoring. However, the two schemes do not 

permit removal of experimental units at any other point other 

than the final termination point of the experiment. In many 

practical situations, there is need for the removal of test items 

at different points prior to the termination of the experiment. 

Progressive censoring schemes allow the removal of 

experimental units at different time points other than the 

termination point of the experiment as discussed in Cohen 

[11]. For detailed discussion on progressive type I and type II 

censoring schemes, the reader may refer to Balakrishnan [12] 

and Balakrishnan and Cramer [13]. 

Aggarwala [14] proposed progressive type I (PTI) interval 

censoring and provided the statistical inference for the 

exponential distribution. Under PTI interval censoring, 

observations are known within two consecutively 

pre-scheduled times and items would be withdrawn at 

pre-scheduled time points. Ng and Wang [15] dealt with the 

estimation of Weibull distribution parameters basing on the 

PTI interval-censored sample. Cheng et al. [16] introduced a 

new algorithm for maximum likelihood estimation under PTI 

interval-censored data. Chen and Lio [17] estimated 

parameters of Generalized exponential distribution under PTI 

interval censoring. Lio et al. [18] considered estimation of 

parameters of Generalized Rayleigh distribution based on 

progressively type I interval-censored data. Lin and Lio [19] 

estimated the parameters of Weibull and Generalized 

exponential distribution under PTI interval censoring by 

Bayesian method. Teimouri and Gupta [20] considered 

estimation methods for the Gompertz-makeham distribution 

under PTI interval censoring. Recently, Singh and Tripathi 

[21] estimated Inverse Weibull distribution parameters under 

PTI interval censoring in classical and Bayesian frameworks. 

In this paper, we consider Maximum Likelihood 

Estimation of parameters of PE distribution based on the PTI 

interval censoring scheme. We propose to use EM algorithm 

to compute the MLEs. We also assess the precision and 

accuracy of the MLEs of the parameters of PE distribution 

under different censoring schemes and parameter values 

using simulation studies. 

The rest of this paper is organized as follows: In section 2, 

we briefly describe progressive type I interval censoring 

scheme. In addition, we obtain Maximum likelihood 

estimates of PE distribution based on PTI interval censoring 

via EM algorithm. In section 3, we conduct simulation study. 

Finally, the conclusions are given in section 4. 

2. Parameter Estimation 

2.1. Progressive Type I Interval Censoring Scheme 

On a lifetime experiment, let n  units be placed on a life 

testing simultaneously at time 
0 0t =  and under inspection at 

m  pre-arranged times 
1 2 ... mt t t< < < . Let 

mt  be the 

planned time for test termination when all surviving items are 

removed. The number of failures,
iX , and the number of 

randomly removed surviving items from the test, 
iR , is 

recorded in the interval ( ]1,i it t− at time 
it where 

1, 2,...,i m= . In the interval ( ]1
,

i i
t t− , the number of 

surviving items, 
iY , is a random variable and 

i iR Y≤ . At time 

it , 
iR  could be determined through pre-determined 

percentages of surviving remaining items. Given 

pre-determined percentages
1 2 1, ,..., mp p p −  and 1mp =  

for removal at time 
1 2 ... mt t t< < <  respectively, 

i i iR p Y= . Hence, the PTI interval-censored sample is 

represented by { }, ,
i i i

X R t . 

2.2. Maximum Likelihood Estimation Based on Progressive 

Type I Interval Censoring Scheme 

Given a PTI interval-censored sample, { }, ,i i iX R t for 

1, 2,...,i m= of size n , from a continuous lifetime 

distribution with (CDF), ( );F t Θ , where parameter vector 

( ),θ λΘ = , the likelihood function is derived as follows, 

according to Aggarwala [14]. 
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The likelihood function (3) reduces to the likelihood 

function for the conventional type I censored case if 

1 2 1... 0mR R R −= = = =
. 

By substituting (2) in (3) and simplifying, we obtain 
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1
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Obtaining log-likelihood of (4) and simplifying, yields 

( ) 1
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Differentiating (5) partially with respect to θ and λ  and equating to zero, we obtain the following normal equations 
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Clearly, normal equations (6) and (7) cannot yield solution 

to θ  and λ  in a closed-form. We therefore introduce the 

Expectation-Maximization (EM) algorithm to obtain the 

MLEs of θ  and λ . 

2.3. EM Algorithm 

The EM Algorithm was introduced by Dempster et al. [22] 

to deal with incomplete data problems. PTI interval 

censoring can be considered as an incomplete data problem 

and therefore EM Algorithm is used as the most suitable 

method in obtaining the MLEs of the unknown parameters. 

EM is an iterative procedure whereby each iteration consists 

of two steps that is the Expectation step (E-step) and the 

Maximization step (M-step). 

Let 
iX  represent the number of failed units observed in 

the interval ( ]1
,

i i
t t−  and 

iR  represent withdrawn units 

from the experiment at a specified time 
it  where 

1,2,...,i m= . Additionally, we assume 
ijT  and 

ijZ  to 

represent lifetimes of observed failure for 1, 2,..., ij X=  

and lifetimes of the missing units for 1,2,..., ij R=  

respectively from an experiment at time 
it  where 

1,2,...,i m= . Therefore, under PTI interval censoring 

scheme, the likelihood function of the complete sample is 

given by 

( ) ( ) ( )
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Introducing logs on (8) we get 
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f T Θ and ( );ijf Z Θ  with (1) yields 
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Simplification of equation (9) yields 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1

ln ln 1
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X X R Rm m m m
T Z
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Where ( )
1

m

i i

i

n X R
=

= +∑  

The lifetimes of the 
iX  failures in the 

thi  interval 

( ]1,i it t−  are independent and follow a doubly truncated PE 

distribution from left and right at 
1it −  and 

it  respectively 

and the lifetimes of the 
iR  censored units in the 

thi  

interval ( ]1,i it t−  are independent and follow a truncated PE 

distribution from left at 
it  for 1, 2,...,i m= . 

The E-step requires the construction of 

pseudo-log-likelihood function. This is achieved by 

computing the conditional expectations and then replacing 

them in the log-likelihood function (10). For our case the 

required conditional expectations are 
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Conditional expectations 
1iE , 

2iE , 
3iE and 

4iE  are 

computed by application of the general form in (11) in 

conjunction with some integration techniques. The required 

expected values of a doubly truncated distribution at p  and 

q  from left and right respectively with 0 p q< < < ∞  

for EM algorithm is given by 

( ]
( )

( ) ( ),

; ,

,
; , ; ,

q

p

yf y dy

E y y p q
F q F p

θ λ

θ λ

θ λ θ λ
 ∈ =  −

∫
       (11) 

Replacing the conditional expectations 
1iE , 

2iE ,
3iE  and 

4iE  in equation (10) completes the E-step. We get the 

pseudo-log-likelihood function as 

( ) ( ) ( )1 2 3 4

1 1 1 1

ln ln 1
m m m m

i i i i i i i i

i i i i

l n X E X E R E R E n e θθλ λ θ λ θ −

= = = =

Θ = − − − − − −∑ ∑ ∑ ∑                (12) 

After substituting the conditional expectations, partial 

derivatives of (12) with respect to parameters are derived in 

order to maximize the pseudo-log-likelihood function as 

follows. 
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1 3

1 1
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Suppose that 
( ) ( )( ),
k kθ λ are estimates of ( ),θ λ  at the 

thk  step. Then, by equating (13) and (14) to zero, we obtain 
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The M-step requires solutions to equations (15) and (16) to 

obtain the next values 
( )1kλ +

 and 
( )1kθ +

 of λ  and θ  

given respectively by 
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Checking convergence, if the convergence occurs at 

( ) ( )( ),
k kλ θ  then the current 

( )kλ  and 
( )kθ  are the 

approximated MLEs of λ  and θ  via EM algorithm. 

Otherwise set 1k k= +  and go back to equations (17) and 

(18). The process is repeated until convergence occurs. At 

convergence 
( ) ( )1k kθ θ+ − <∈  and ( ) ( )1k kλ λ+ − <∈  for 

some given 0∈> , say 0.0001∈= . 

3. Simulation Study 

Simulation study was conducted to investigate the behavior 

of the proposed MLEs of PE distribution parameters under 

PTI interval censoring scheme via EM algorithm on simulated 

data. The simulation was conducted in R language, a software 

package that was designed by Ihaka and Gentleman [23]. 

3.1. Simulation Algorithm 

According to the algorithm proposed in Aggarwala [14], a 

progressively type I interval-censored data { }, ,l l lX R t  for 

1, 2,...,l m=  from PE distribution with CDF (2) is 

generated as follows: Let 
0 0X = , 

0 0R =  and 

( ),θ λΘ∈ . 
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( )
1

1

l

l l k k l

k

R floor p n X R X
−

=

  = × − + −  
  

∑  

Where floor () returns the greatest integer equal to or less 

than the argument. 

Clearly, if 
1 2 1... 0mp p p −= = = = , then 

1 2 1... 0mR R R −= = = =  and hence 

1 2 1, , ..., ,m m mX X X X R+ =  becomes a simulated sample 

from the conventional type I interval censoring. The above 

algorithm is an improvement from the one suggested by Kemp 

and Kemp [24]. 

To investigate the behavior of the MLEs, we consider the 

schemes below, similar to schemes used in Ng and Wang [15], 

Chen and Lio [17] and Lio et al. [18]. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

 1,  0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5,1

 2,  0.5, 0.5, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25,1

 3,  0, 0, 0, 0, 0, 0, 0, 0,1

 4,  0.25, 0, 0, 0, 0, 0, 0, 0,1

scheme p

scheme p

scheme p

scheme p

=

=

=

=
 

The schemes are chosen to specify the percentage of 

surviving units to be withdrawn at the 9 censoring and 

monitoring points. Whereby in ( )1
p  for the first four 

intervals the removal is lighter as compared to the last four 

intervals, while in ( )2
p  the reverse scenario of ( )1

p  is 

applied. In ( )3
p  no removal is done prior to termination 

which is a case similar to conventional type I interval 

censoring. Lastly, in ( )4
p  removal is conducted at the 

left-most and right-most ends. 

We considered the parameter values and sample sizes 

respectively as 

( ) ( ) ( ) ( ) ( ){ }, 0.02, 0.2 , 0.02, 0.4 , 0.03, 0.2 , 0.03, 0.4θ λ ∈  and 

n=20, 200 

In this paper, convergence is assumed to occur when the 

absolute difference between successive estimates is less than 

0.0001. 

Suppose 
i

Λ
Θ is the MLE of Θ  for the i

th
 replication of the 

simulated EM algorithm, then from the simulation runs the 

absolute value of bias and mean squared error (MSE) of 
Λ
Θ  

are respectively computed by applying the formulae below:- 

i. 
100

1

1
( )

100
i

i

Bias
Λ Λ

=
Θ = Θ−Θ∑ , where ( ),θ λΘ=  

ii. 
2100

1

1
( )

100
i

i

MSE
Λ Λ

=

 Θ = Θ − Θ 
 

∑
 

3.2. Simulation Results 

Table 1. Bias and MSE of θ̂  and λ̂ under different censoring schemes when 0.02θ =  and 0.2λ = . 

n 
Censoring 

scheme 

Estimated values     

θ̂  λ̂  ˆ B ia s θ  ˆ B ia s λ  ˆM S E  θ  ˆM S E  λ  

20 
1 0.02017589 0.1010482 0.0001759 0.0989518 3.094E-08 0.00979 

2 0.02022346 0.0710573 0.0002235 0.1289427 4.993E-08 0.01663 

 
3 0.02010807 0.1428157 0.0001081 0.0571843 1.168E-08 0.00327 

4 0.02014845 0.1410200 0.0001484 0.0589800 2.204E-08 0.00348 

200 

1 0.02015016 0.1226911 0.0001502 0.0773089 2.255E-08 0.00598 

2 0.02022257 0.0774668 0.0002226 0.1225332 4.954E-08 0.01501 

3 0.02006497 0.1770925 0.0000650 0.0229075 4.221E-09 0.00052 

 4 0.02012954 0.1453538 0.0001295 0.0546462 1.678E-08 0.00299 

Table 2. Bias and MSE of θ̂  and λ̂ under different censoring schemes when 0.02θ =  and 0.4λ = . 

n 
Censoring 

scheme 

Estimated values     

θ̂  λ̂  ˆ B ia s θ  ˆ B ia s λ  ˆM S E  θ  ˆM S E  λ  

20 
1 0.02025872 0.2181204 0.0002587 0.1818796 6.694E-08 0.03308 

2 0.02031863 0.1479301 0.0003186 0.2520699 1.015E-07 0.06354 

 
3 0.02013722 0.2795695 0.0001372 0.1204305 1.883E-08 0.01450 

4 0.02021796 0.2531296 0.0002180 0.1468704 4.751E-08 0.02157 

200 

1 0.02021691 0.2446643 0.0002169 0.1553357 4.705E-08 0.02413 

2 0.02027654 0.1842143 0.0002765 0.2157857 7.647E-08 0.04656 

3 0.02010860 0.3091464 0.0001086 0.0908536 1.179E-08 0.00825 

 4 0.02017807 0.2812259 0.0001781 0.1187741 3.171E-08 0.01411 
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Table 3. Bias and MSE of θ̂  and λ̂ under different censoring schemes when 0.03θ =  and 0.2λ = . 

n 
Censoring 

scheme 

Estimated values     

θ̂  λ̂  ˆ B i a s θ  ˆ B i a s λ  ˆM S E  θ  ˆM S E  λ  

20 
1 0.03038365 0.1005903 0.0003837 0.0994097 1.472E-07 0.00988 

2 0.03048287 0.07007791 0.0004829 0.12992209 2.332E-07 0.01688 

 
3 0.03023907 0.1426577 0.0002391 0.0573423 5.715E-08 0.00329 

4 0.03032899 0.1409852 0.0003290 0.0590148 1.082E-07 0.00348 

200 

1 0.03035381 0.1162870 0.0003538 0.0837130 1.252E-07 0.00701 

2 0.03048001 0.07636214 0.0004800 0.12363786 2.034E-07 0.01529 

3 0.03014612 0.1766993 0.0001461 0.0233007 2.135E-08 0.00054 

 4 0.03028618 0.1451920 0.0002862 0.0548080 8.190E-08 0.00300 

Table 4. Bias and MSE of θ̂  and λ̂ under different censoring schemes when 0.03θ =  and 0.4λ = . 

n 
Censoring 

scheme 

Estimated values     

θ̂  λ̂  ˆ B i a s θ  ˆ B i a s λ  ˆM S E  θ  ˆM S E  λ  

20 
1 0.03061982 0.2177433 0.0006198 0.1822567 3.842E-07 0.03322 

2 0.03070269 0.1469932 0.0007027 0.2530068 4.938E-07 0.06401 

 
3 0.03037520 0.2795617 0.0003752 0.1204383 1.408E-07 0.01451 

4 0.03048842 0.2529547 0.0004884 0.1470453 2.386E-07 0.02162 

200 

1 0.03048228 0.2442800 0.0004823 0.1557200 2.326E-07 0.02425 

2 0.03061033 0.1798701 0.0006103 0.2201299 3.725E-07 0.04846 

3 0.03024274 0.3091344 0.0002427 0.0908656 5.892E-08 0.00826 

 4 0.03039780 0.2810305 0.0003978 0.1189695 1.582E-07 0.01415 

 
A summary of results from Tables 1-4 is provided below:  

i. The MSE and bias of the estimates decrease as the sample 

size increase from n=20 to n=200 for each censoring 

scheme. These imply that the estimates become more 

precise and accurate as the sample size increases. 

ii. Among the four censoring schemes, the third scheme 

( )3
p  provides the most precise and accurate results as 

seen from the MSE and bias values, followed by scheme 

( )4
p , ( )1

p  and finally ( )2
p . Similar performance among 

the four schemes is observed when the sample size is 

increased from n=20 to n=200. 

The results of the performance comparisons among these 

four censoring schemes are similar to the results obtained in 

Aggarwala [14], Ng and Wang [15], Chen and Lio [17] and Lio 

et al. [18]. 

These phenomena are expected since the third censoring 

scheme ( )3
p , could have the largest number of failure items 

observed before the termination of the life-testing, followed 

by ( )4
p , ( )1

p  and finally ( )2
p . Intuitively, these are also 

consistent with the statistical theory that the larger the “sample 

size” is the more accurate the parameter estimate is. 

iii. As for the performance among the assumed true 

parameters, it is observed that when the values are 

varied from ( )0.02  and =0.2θ λ= to 

( )0 .0 3  an d  = 0 .4θ λ=  the estimators become less 

accurate and less precise as depicted from the bias and 

MSE values from Table 1 and Table 4. 

4. Conclusion 

The study has addressed the problem of the Maximum 

Likelihood Estimation of parameters for Poisson-Exponential 

distribution based on progressive type I interval-censored data. 

The maximum likelihood estimates were obtained using the 

EM algorithm. 

A comparison of the MLEs obtained was made by 

simulation under four different censoring schemes and various 

parameter values. It was observed that: 

i. For an increasing sample size, the estimated values of the 

parameters became closer to the true values. 

ii. Among the four censoring schemes considered, the third 

scheme provided the most accurate and precise results 

then schemes four, one and lastly scheme two. 
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